References for GEISA-2015 sub-database of Infrared absorption cross-sections

1/ Ballard J, Knight RJ, Newnham DA, Vander Auwera J, Herman M, Di
Lonardo G, Masciarelli G, Nicolaisen FM, Beukes JA, Christensen LK,
McPheat R, Duxbury G, Freckleton R, Shine KP. 2000 An intercomparison
of laboratory measurements of absorption cross-sections and integrated
absorption intensities for HCHC-22. J.Q.S.R.T., 66, 109-28.

2/ Clerbaux C, Colin R, Simon P.C, Granier C. 1993. Infrared Cross
Sections and Global Warming Potentials of 10 Alternative
Hydrohalocarbons. J. Geophys. Res., 98,10491‑97.

3/ Christidis N, Hurley, M.D, Pinnock S, Shine K.P and Wallington T.J.
1997. Radiative forcing of climate change by CFC-11 and possible CFC
replacements. J. Geophys. Res., 102,19597-609.

4/ Di Lonardo G, Masciarelli G. 2000. Infrared absorption
cross-sections and integrated absorption intensities of HFC-125 and
HFC-143a. J.Q.S.R.T., 66, 129-42.

5/ Heathfield AE, Anastasi A, McCulloch A and Nicolaisen FM. 1998.
Integrated Infrared Absorption Coefficients of several partially
fluorinated ether compounds: CF3OCF2H, CF2HOCF2H, CH3OCF2CF2H, CH3OCF2CFClH, CH3CH2OCF2CF2H, CF3CH2OCF2CF2H and CH2=CHCH2OCF2CF2H.J.Q.S.R.T., 32, 2825-33.

6/ Highwood E.J, Shine K.P, Hurley M.D, Wallington T.J. 1999.
Estimation of direct radiative transfer forcing due to non-methane
hydrocarbons. Atmos. Environ. 33, 159-67.

7/ Hurley M.D. 2003. Private communication.

8/ Li Z and Varanasi P. 1994. Measurement of the absorption
cross-sections of CFC-11 at conditions representing various model
atmospheres. J.Q.S.R.T., 52, 137-44.

9/ M.S.F./R.A.L: Molecular Spectroscopy Facility/RutherfordAppleton

10/ Massie S.T, Goldman A, Murcray D.G, Gille J.C. 1985. Approximate
absorption cross sections of F12, F11, ClONO2, N2
O5, HNO3, CCl4, CF4, F21, F113, F114, and HNO4. Appl. Opt., 24, 3426‑27.

11/ Nemtchinov V, Varanasi P. 2003a. Thermal infrared absorption
cross-sections of CF4 for atmospheric applications.J.Q.S.R.T., 82, 461-71.

12/ Nemtchinov V, Varanasi P. 2003b. Thermal Infrared Absorption
Cross-sections of CCl4 needed for Atmospheric
Remote-Sensing. J.Q.S.R.T., 82, 473-81.

13/ Nemtchinov V, Varanasi P. 2004. Absorption cross-sections of
HFC-134a in the spectral region between 7 and 12 μm,J.Q.S.R.T., 84, 285-94.

14/ Pinnock S, Hurley M.D, Shine K.P, Wallington T.J and Smyth T.J.
1995. Radiative forcing of climat by hydrochlorofluorocarbons and
hydrofluorocarbons. J. Geophys. Res., 100, 23227-38.

15/ Smith KP. Private communication, 2003.

16/ Vander Auwera J. 2000. Infrared absorption cross-sections for two
substituted ethanes: 1,1-difluoroethane (HFC-152a) and
1,2-dichloroethane. J.Q.S.R.T., 66, 143-51.

17/ Vander Auwera J. 2003. Private communication. Ballard J, Knight
R.J, Newnham D.A., Vander Auwera J, Herman M, Di LOnardo G, Masciarelli
G, Nicolaisen F.M, Beukes J.A, Christensen L.K, McPheat R, Duxbury G,
Freckleton R, Shine K.P. 2000. An intercomparison of laboratory
measurements of absorption cross-sections and integrated absorption
intensities for HCHC-22. J.Q.S.R.T., 66, 109-28.

18/ Varanasi P, Nemtchinov V. 1994. Thermal infrared absorption
coefficients of CFC‑12 at atmospheric conditions. J.Q.S.R.T., 51, 679‑87.

19/ Varanasi P. 2000. Private communication.

20/ Varanasi P. 2001. Private communication.

21/ Varanasi, P., Nemtchinov, V., Li, Z., Cherukuri, A. 1994. Spectral
Absorption-coefficient Data on HCFC‑22 and SF6 for Remote
Sensing Applications. J.Q.S.R.T., 52, 323-32.

22/ Wagner G, Birk M. 2003. Private Communication. New infrared
spectroscopic database for chlorine nitrate. J.Q.S.R.T., 82, 443-60.

23/ Zou Q, Sun C, Nemtchinov V, Varanasi P. 2004. Thermal infrared
cross-sections of C2F6 at atmospheric
temperatures. J.Q.S.R.T., 83, 215-21.

24/GEISA 1997.

25/ Rinsland CP, Sharpe SW, Sams RL. 2003. Temperature-dependent
cross-sections in the thermal infrared bands of SF5CF3.J.Q.S.R.T., 82, 483–90.

26/ Waterfall A. Measurement of organic compounds in the upper
troposphere. 2003. Ph. D. Thesis, University of Oxford.

27/ Rinsland CP, Devi VM, Blake TA, Sams RL, Sharpe S, Chiou LS. 2008.
Quantitative measurement of integrated band intensities of benzene
vapor in the mid-infrared at 278, 298, and 323 K. J.Q.S.R.T., 109, 2511-22.

28/ Kleinböhl A, Toon GC, Sen B, Blavier J-F, Weisenstein DK, Wennberg
PO. 2005. Infrared measurements of atmospheric CH3CN.Geophys. Res. Lett., 32, L23807 (Paper No. 10.1029/2005GL024283).

29/ Rinsland CP, Devi VM., Benner DC, Blake TA, Sams RL, Brown LR et
al. 2008. Multispectrum analysis of the ν4 band of CH 3CN: Positions, intensities, self- and N2-broadening and pressure-induced shifts. J.Q.S.R.T., 109,974-94.

30/ Allen G, Remedios JJ, Newnham DA, Smith KM, Monks PS. 2005.
Improved mid-infrared cross-sections for peroxyacetylnitrate (PAN)
vapour. Atmos. Chem. Phys., 5, 47–56.

31/ Allen G, Remedios JJ, Smith KM. 2005. Low temperature mid-infrared
cross-sections for peroxyacetyl nitrate (PAN) vapour. Atmos. Chem. Phys., 5, 3153–8.

59/ G. Myhre, F. Stordal, I. Gausemel, C.J. Nielsen, E. Mahieu,
Line-by-line calculations of thermal infrared radiation representative
for global condition: CFC-12 as an example, J.Q.S.R.T., 97 (2006) 317-331.

60/ G. Acerboni, J.A. Beukes, N.R. Jensen, J. Hjorth, G. Myhre, C.J.
Nielsen, J.K. Sundet, Atmospheric degradation and global warming
potentials of three perfluoroalkenes, Atmos. Environ., 35 (2001) 4113-4123.

61/ G. Myhre, C.J. Nielsen, D.L. Powell, F. Stordal, Infrared
absorption cross section, radiative forcing, and GWP of four
hydrofluoro(poly)ethers, Atmos. Environ., 93 (1999) 4447-4458.

62/ S.M. Ryan, C.J. Nielsen, Global Warming Potential of Inhaled
Anesthetics: Application to Clinical Use, Anesth. Analg., 111 (2010) 92-98.

63/ B. D’Anna, S.R. Sellevag, K. Wirtz, C.J. Nielsen, Photolysis study
of perfluoro-2-methyl-3-pentanone under natural sunlight conditions,Environ. Sci. Technol., 39 (2005) 8708-8711.

64/ N. Oyaro, S.R. Sellevag, C.J. Nielsen, Study of the OH and
Cl-initiated oxidation, IR absorption cross-section, radiative forcing,
and global warming potential of four C-4-hydrofluoroethers,Environ. Sci. Technol., 38 (2004) 5567-5576.

65/ N. Oyaro, S.R. Sellevag, C.J. Nielsen, Atmospheric chemistry of
hydrofluoroethers: Reaction of a series of hydrofluoro ethers with OH
radicals and Cl atoms, atmospheric lifetimes, and global warming
potentials, J. Phys. Chem. A., 109 (2005) 337-346.

66/ S.R. Sellevag, C.J. Nielsen, O.A. Sovde, G. Myhre, J.K. Sundet, F.
Stordal, I.S.A. Isaksen, Atmospheric gas-phase degradation and global
warming potentials of 2-fluoro ethanol, 2,2-difluoroethanol, and
2,2,2-trifluoroethanol, Atmos. Environ., 38 (2004) 6725-6735.

67/ S.R. Sellevåg, B. D’Anna, C.J. Nielsen, Infrared Absorption
Cross-Sections and Estimated Global Warming Potentials of CF3CH2CH2OH, CHF2CF2CH2OH, CF3CF2CH2OH, CF3CHFCF2CH2OH, and CF3CF2CF2CH2OH,Asian Chemistry Letters. (2007) 33-40.

68/ E. Jiménez, M. Antinolo, B. Ballesteros, E. Martinez, J.
Albaladejo, Atmospheric Lifetimes and Global Warming Potentials of CF3CH2CH2OH and CF3(CH2)2CH2OH,Phys. Chem. Chem. Phys., 11 (2010) 4079-4087.

69/ M. Antiñolo, S. González, B. Ballesteros, J. Albaladejo, E.
Jiménez, Laboratory Studies of CHF2CF2CH 2OH and CF3CF2CH2OH: UV and
IR Absorption Cross Sections and OH Rate Coefficients between 263 and
358 K, J. Phys. Chem. A., 116 (2012) 6041-6050.

70/ S.R. Sellevåg, T. Kelly, H. Sidebottom, C.J. Nielsen, A study of
the IR and UV-Vis absorption cross-sections, photolysis and
OH-initiated oxidation of CF3CHO and CF3CH 2CHO, Phys. Chem. Chem. Phys., 6
(2004) 1243-1252.

71/ M. Antiñolo, Fluoroalcohols and Fluoroaldehydes in the Troposphere:
Kinetics and Photochemistry in the Gas Phase sutdied by Pulsed Laser
Techniques, PhD Thesis, University of Castilla-La Mancha. 2011.

72/ J.J. Harrison, N.D.C Allen, P.F. Bernath, Infrared absorption cross
sections for ethane (C2H6) in the 3 mm region,J.Q.S.R.T., 111 (2010) 357-363.

73/ J.J. Harrison, P.F. Bernath, Infrared absorption cross sections for
propane (C3H8) in the 3 mm region,J.Q.S.R.T., 111 (2010) 1282-1288.

74/ J.J. Harrison, N. Humpage, N.D.C. Allen, A.M. Waterfall, P.F.
Bernath, J.J. Remedios, Mid-infrared absorption cross sections for
acetone (propanone), J.Q.S.R.T., 112 (2011a) 457-464.

75/ J.J. Harrison, N.D.C. Allen, P.F. Bernath, Infrared absorption
cross sections for acetone (propanone) in the 3 mm region,J.Q.S.R.T., 112 (2011b) 53-58.

76/ J.J. Harrison, P.F. Bernath, Mid- and long-wave infrared absorption
cross sections for acetonitrile, J.Q.S.R.T., 113 (2012) 221-225.

77/ N.D.C. Allen, J.J. Harrison, P.F. Bernath, Acetonitrile (CH3CN) infrared absorption cross sections in the 3 μm region,J.Q.S.R.T., 112 (2011) 1961-1966.

78/ J.J. Harrison, N.D.C. Allen, P.F. Bernath, Infrared absorption
cross sections for methanol, J.Q.S.R.T., 113 (2012) 2189-2196.

79/ J.J. Harrison, Infrared absorption cross sections for
trifluoromethane, J.Q.S.R.T., 130 (2013) 359-364.

80/ K.A. Tereszchuk, P.F. Bernath, Infrared absorption
cross-sections for acetaldehyde (CH3CHO) in the 3 µm region,J.Q.S.R.T., 112 (2011) 990-993.

81/ D.M. O’Leary, A.A. Ruth, S. Dixneuf, J. Orphal, R. Varma, The near
infrared cavity-enhanced absorption spectrum of methylcyanide,J.Q.S.R.T., 113 (2012) 1138-1147.

82/ E.P. Faragó, B. Viskolcz, C. Schoemaecker, C. Fittschen,
Measurement of the absorption spectrum and of absolute absorption
cross-sections of CH3O2 Radicals and CH3I in the near IR Region, J. Phys. Chem.A, 117 (2013) 12802-12811.

83/ A.A. Ruth, U. Heitmann, E. Heinecke, C. Fittschen, The
rotationally-resolved absorption spectrum of formaldehyde from 6550 to
7050 cm–1, Z. Phys. Chem., 229 (2015) 1609-1624.

84/ J. Thiebaud, S. Crunaire, C. Fittschen, Measurements of line
strengths in the 2n1 band of the HO2 radical
using laser photolysis/continuous wave cavity ring-down spectroscopy
(cw-CRDS), J. Phys. Chem. A, 111 (2007) 6959-6966.

85/ N. Ibrahim, J. Thiebaud, J. Orphal, C. Fittschen, Air-broadening
coefficients of the HO2 radical in the 2n1 band
measured using cw-CRDS, J. Mol. Spectrosc., 242 (2007) 64-69.

86/ C. Jain, P. Morajkar, C. Schoemaecker, B. Viskolcz, C. Fittschen,
Measurement of absolute absorption cross-sections for nitrous acid
(HONO) in the near-infrared region by the continuous wave cavity
ring-down spectroscopy (cw-CRDS) technique coupled to laser photolysis,J. Phys. Chem. A, 115 (2011) 10720-10728.

87/ D.M. O’Leary, J. Orphal, A.A. Ruth, U. Heitmann, P. Chelin, C.E.
Fellows, The cavity-enhanced absorption spectrum of NH3 in
the near-infrared region between 6850 and 7000 cm-1,J.Q.S.R.T., 109 (2008) 1004-1015.